参考文献列表

 

本页面列出的参考文献列表由李红谊、姚华建、雷建设、李娟、赵连锋、温联星、陈凌、朱露培、赵亮、周莹、吴庆举等提供,特此感谢。

References for crust models from seismic profiles:

  1. 李松林,张先康,张成科等.玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究[J].地球物理学报,2002,45(2):210-217.DOI:10.3321/j.issn:0001-5733.2002.02.007.
  2. 嘉世旭,张先康.华北不同构造块体地壳结构及其对比研究[J].地球物理学报,2005,48(3):611-620.DOI:10.3321/j.issn:0001-5733.2005.03.019.
  3. 嘉世旭,齐诚,王夫运等.首都圈地壳网格化三维结构[J].地球物理学报,2005,48(6):1316-1324.DOI:10.3321/j.issn:0001-5733.2005.06.014.
  4. 李松林,张先康,宋占隆等.多条人工地震测深剖面资料联合反演首都圈三维地壳结构[J].地球物理学报,2001,44(3):360-368.DOI:10.3321/j.issn:0001-5733.2001.03.008.
  5. 杨卓欣,刘宝峰,王勤彩等.新丰江库区上地壳三维细结构层析成像[J].地球物理学报,2013,56(4):1177-1189.DOI:10.6038/cjg20130413.
  6. 嘉世旭,张成科,赵金仁等.华北东北部裂陷盆地与燕山隆起地壳结构[J].地球物理学报,2009,52(1):99-110.
  7. 张先康,赵金仁,张成科等.帕米尔东北侧地壳结构研究[J].地球物理学报,2002,45(5):665-671.DOI:10.3321/j.issn:0001-5733.2002.05.008.
  8. 王夫运,张先康,陈棋福等.北京地区上地壳三维细结构层析成像[J].地球物理学报,2005,48(2):359-366.DOI:10.3321/j.issn:0001-5733.2005.02.018.
  9. 杨卓欣,张先康,赵金仁等.长白山天池火山区三维地壳结构层析成像[J].地球物理学报,2005,48(1):107-115.DOI:10.3321/j.issn:0001-5733.2005.01.016.
  10. 张先康,嘉世旭,赵金仁等.西秦岭-东昆仑及邻近地区地壳结构——深地震宽角反射/折射剖面结果[J].地球物理学报,2008,51(2):439-450.DOI:10.3321/j.issn:0001-5733.2008.02.016.
  11. 李松林,张先康,W.D.Mooney等.伽师地震区地壳细结构及发震断层的初步研究[J].地球物理学报,2002,45(1):76-82.DOI:10.3321/j.issn:0001-5733.2002.01.010.
  12. 刘保金,沈军,张先康等.深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造[J].地球物理学报,2007,50(5):1464-1472.DOI:10.3321/j.issn:0001-5733.2007.05.022.
  13. 赵金仁,张先康,张成科等.山西五台山地区地壳深部结构特征研究[J].地球物理学报,2006,49(1):123-129.DOI:10.3321/j.issn:0001-5733.2006.01.017.
  14. 段永红,张先康,方盛明等.华北地区上部地壳结构的三维有限差分层析成像[J].地球物理学报,2002,45(3):362-369.DOI:10.3321/j.issn:0001-5733.2002.03.008.
  15. 赵金仁,张先康,张成科等.利用宽角反射/折射和深反射探测剖面揭示三河-平谷大震区深部结构特征[J].地球物理学报,2004,47(4):646-653.DOI:10.3321/j.issn:0001-5733.2004.04.015.
  16. 赵金仁,李松林,张先康等.青藏高原东北缘莫霍界面的三维空间构造特征[J].地球物理学报,2005,48(1):78-85.DOI:10.3321/j.issn:0001-5733.2005.01.013.
  17. 张先康,张成科,赵金仁等.长白山天池火山区岩浆系统深部结构的深地震测深研究[J].地震学报,2002,24(2):135-143.DOI:10.3321/j.issn:0253-3782.2002.02.003.
  18. 段永红,张先康,刘志等.长白山-镜泊湖火山区地壳结构接收函数研究[J].地球物理学报,2005,48(2):352-358.DOI:10.3321/j.issn:0001-5733.2005.02.017.
  19. 方盛明,张先康,余钦范等.中国东部及其邻域岩石圈底界面特征及地震活动性[J].地球物理学报,2001,44(1):48-53.DOI:10.3321/j.issn:0001-5733.2001.01.006.
  20. 张先康,赵金仁,刘国华等.三河-平谷8.0级大震区震源细结构的深地震反射探测研究[J].中国地震,2002,18(4):326-336.DOI:10.3969/j.issn.1001-4683.2002.04.002.
  21. 张成科,张先康,赵金仁等.渤海湾及其邻区壳幔速度结构研究与综述[J].地震学报,2002,24(4):428-435.DOI:10.3321/j.issn:0253-3782.2002.04.011.
  22. 徐朝繁,张先康,刘宝金等.高分辨折射地震资料处理方法及其应用[J].地球物理学进展,2005,20(4):1052-1058.DOI:10.3969/j.issn.1004-2903.2005.04.028.
  23. 杨卓欣,赵金仁,张先康等.伽师强震群区上地壳三维速度层析成像[J].地震学报,2002,24(2):153-161.DOI:10.3321/j.issn:0253-3782.2002.02.005.
  24. 张先康,李松林,王夫运等.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异—深地震测深的结果[J].地震地质,2003,25(1):52-60.DOI:10.3969/j.issn.0253-4967.2003.01.006.
  25. 赵金仁,张先康,张成科等.香河-北京-涿鹿及其相邻地区壳幔构造与速度结构特征[J].地震地质,1999,21(1):29-36.DOI:10.3969/j.issn.0253-4967.1999.01.004.
  26. 方盛明,张先康,嘉世旭等.华北地区布格重力异常的多尺度分解特征与地震活动性[J].大地测量与地球动力学,2002,22(1):34-39.DOI:10.3969/j.issn.1671-5942.2002.01.007.
  27. 方盛明,张先康,刘保金等.探测大城市活断层的地球物理方法[J].地震地质,2002,24(4):606-613.DOI:10.3969/j.issn.0253-4967.2002.04.016.
  28. 嘉世旭,张先康,方盛明等.华北裂陷盆地不同块体地壳结构及演化研究[J].地学前缘,2001,8(2):259-266.DOI:10.3321/j.issn:1005-2321.2001.02.007.
  29. 徐朝繁,张先康,朱金芳等.复杂介质结构中折射界面的哈格多恩原理波前成像[J].地震地质,2002,24(4):542-548.DOI:10.3969/j.issn.0253-4967.2002.04.008.
  30. 刘保金,胡平,孟勇奇等.北京地区地壳精细结构的深地震反射剖面探测研究[J].地球物理学报,2009,52(9):2264-2272.DOI:10.3969/j.issn.0001-5733.2009.09.010.
  31. 刘明军,李松林,方盛明等.利用地震波速研究青藏高原东北缘地壳组成及其动力学[J].地球物理学报,2008,51(2):412-430.DOI:10.3321/j.issn:0001-5733.2008.02.014.
  32. 嘉世旭,张先康.青藏高原东北缘深地震测深震相研究与地壳细结构[J].地球物理学报,2008,51(5):1431-1443.DOI:10.3321/j.issn:0001-5733.2008.05.016.
  33. 徐朝繁,田晓峰,嘉世旭等.龙门山中段及其临近地区上地壳细结构——人工地震测深结果[J].国际地震动态,2012,(6):82.DOI:10.3969/j.issn.0253-4975.2012.06.082.
  34. 嘉世旭,李志雄,徐朝繁等.雷琼拗陷地壳结构特征[J].地球物理学报,2006,49(5):1385-1394.DOI:10.3321/j.issn:0001-5733.2006.05.018.
  35. 赵成斌,孙振国,刘保金等.邢台地震区浅部构造特征及其与深部构造的耦合关系[J].地震地质,1999,21(4):417-424.DOI:10.3969/j.issn.0253-4967.1999.04.017.
  36. 赵金仁,刘宝峰,潘素珍等.西吉—中卫地震测深剖面及其解释[J].地震地质,2001,23(1):86-92.DOI:10.3969/j.issn.0253-4967.2001.01.011.
  37. 刘宝峰,李松林,张先康等.玛沁-靖边剖面S波资料研究与探讨[J].地震学报,2003,25(1):82-88.DOI:10.3321/j.issn:0253-3782.2003.01.010.
  38. 张成科,张先康,赵金仁等.长白山天池火山区及邻近地区壳幔结构探测研究[J].地球物理学报,2002,45(6):812-820.DOI:10.3321/j.issn:0001-5733.2002.06.008.
  39. 李松林,张先康,樊计昌等.利用断层围陷波研究昆仑山口西8.1级地震破裂面[J].地震学报,2005,27(1):42-50.DOI:10.3321/j.issn:0253-3782.2005.01.005.
  40. 刘保金,孙振国,赵成斌等.延庆-怀来地区高分辨率浅地震反射剖面[J].地震地质,1999,21(4):425-430.DOI:10.3969/j.issn.0253-4967.1999.04.018.
  41. 刘志,张先康,周雪松等.帕米尔东北侧地壳物性结构及其发震环境探讨[J].地震学报,2003,25(3):242-249.DOI:10.3321/j.issn:0253-3782.2003.03.002.
  42. 赖晓玲,张先康,李松林等.小波多分辨分析在壳幔非均匀尺度研究中的应用[J].地球物理学报,2003,46(1):47-53.DOI:10.3321/j.issn:0001-5733.2003.01.008.
  43. 刘志,张先康,王夫运等.用地震走时反演计算长白山天池火山区二维地壳泊松比[J].地震学报,2005,27(3):324-331.DOI:10.3321/j.issn:0253-3782.2005.03.011.
  44. 徐朝繁,张先康,段永红等.新疆伽师强震群区上部地壳细结构的高分辨折射地震探测研究[J].地震学报,2006,28(1):60-69.DOI:10.3321/j.issn:0253-3782.2006.01.008.
  45. 徐朝繁,张先康,张建狮等.射线数分布分析法及其在地壳上部复杂结构探测中的应用[J].地震学报,2006,28(2):167-175.DOI:10.3321/j.issn:0253-3782.2006.02.007.
  46. 赵金仁,张先康,杨卓欣等.长白山天池火山区上地壳三维速度层析成像[J].地球物理学报,2003,46(6):796-802.DOI:10.3321/j.issn:0001-5733.2003.06.011.
  47. 王夫运,张先康,杨卓欣等.用地震走时反演长白山天池火山地区的二维地壳结构[J].地震学报,2002,24(2):144-152.DOI:10.3321/j.issn:0253-3782.2002.02.004.
  48. 段永红,张先康,杨卓新等.长白山天池火山区基底结构研究[J].地震地质,2003,25(3):501-508.DOI:10.3969/j.issn.0253-4967.2003.03.016.

References for crust models:

  1. Bao, X. et al. (2015), Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions, Earth and Planetary Science Letters, 415, 16–24, doi:10.1016/j.epsl.2015.01.020.
  2. Guo, X., R. Gao, G. Randy Keller, X. Xu, H. Wang, and W. Li (2013), Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range, Earth and Planetary Science Letters, 379, 72–80, doi:10.1016/j.epsl.2013.08.005.
  3. Guo, X., R. Gao, H. Wang, W. Li, G. R. Keller, X. Xu, H. Li, and J. Encarnacion (2015), Crustal architecture beneath the Tibet-Ordos transition zone, NE Tibet, and the implications for plateau expansion, Geophysical Research Letters, 42(24), 10,631-10,639, doi:10.1002/2015GL066668.
  4. Hacker, B. R., M. H. Ritzwoller, and J. Xie (2014), Partially melted, mica-bearing crust in Central Tibet, Tectonics, 33(7), 1408–1424, doi:10.1002/2014TC003545.
  5. Jiang, M., A. Galvé, A. Hirn, B. de Voogd, M. Laigle, H. P. Su, J. Diaz, J. C. Lépine, and Y. X. Wang (2006), Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North–Central Tibetan Plateau) from wide-angle reflection seismology, Tectonophysics, 412(3–4), 121–140, doi:10.1016/j.tecto.2005.09.011.
  6. Karplus, M. S., W. Zhao, S. L. Klemperer, Z. Wu, J. Mechie, D. Shi, L. D. Brown, and C. Chen (2011), Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data, Journal of Geophysical Research, 116(B7), doi:10.1029/2010JB007911.
  7. Lei, J., and D. Zhao (2009), Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms 8.0), Geochemistry, Geophysics, Geosystems, 10(10), n/a-n/a, doi:10.1029/2009GC002590.
  8. Liang, C., and X. Song (2006), A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography, Geophysical Research Letters, 33(22), doi:10.1029/2006GL027926.
  9. Liu, M., W. D. Mooney, S. Li, N. Okaya, and S. Detweiler (2006), Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin, Tectonophysics, 420(1–2), 253–266, doi:10.1016/j.tecto.2006.01.025.
  10. Liu, Q. Y., R. D. van der Hilst, Y. Li, H. J. Yao, J. H. Chen, B. Guo, S. H. Qi, J. Wang, H. Huang, and S. C. Li (2014), Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults, Nature Geoscience, 7(5), 361–365, doi:10.1038/ngeo2130.
  11. Rapine, R., F. Tilmann, M. West, J. Ni, and A. Rodgers (2003), Crustal structure of northern and southern Tibet from surface wave dispersion analysis, Journal of Geophysical Research: Solid Earth, 108(B2), doi:10.1029/2001JB000445.
  12. Sun, X., X. Bao, M. Xu, D. W. Eaton, X. Song, L. Wang, Z. Ding, N. Mi, D. Yu, and H. Li (2014), Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion, Geophysical Research Letters, 41(5), 1479–1484, doi:10.1002/2014GL059269.
  13. Wang, C., R. Gao, A. Yin, H. Wang, Y. Zhang, T. Guo, Q. Li, and Y. Li (2011), A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet, Earth and Planetary Science Letters, 306(3–4), 279–288, doi:10.1016/j.epsl.2011.04.010.
  14. Wang, C.-Y., W. W. Chan, and W. D. Mooney (2003), Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications, Journal of Geophysical Research: Solid Earth, 108(B9), doi:10.1029/2002JB001973.
  15. Wang, C.-Y., W.-B. Han, J.-P. Wu, H. Lou, and W. W. Chan (2007), Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications, Journal of Geophysical Research, 112(B7), doi:10.1029/2005JB003873.
  16. Wang, C.-Y., H. Lou, P. G. Silver, L. Zhu, and L. Chang (2010), Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications, Earth and Planetary Science Letters, 289(3–4), 367–376, doi:10.1016/j.epsl.2009.11.026.
  17. Wang, Y., W. D. Mooney, X. Yuan, and N. Okaya (2013), Crustal Structure of the Northeastern Tibetan Plateau from the Southern Tarim Basin to the Sichuan Basin, China, Tectonophysics, 584, 191–208, doi:10.1016/j.tecto.2012.09.003.
  18. Xu, T., Z. Wu, Z. Zhang, X. Tian, Y. Deng, C. Wu, and J. Teng (2014), Crustal structure across the Kunlun fault from passive source seismic profiling in East Tibet, Tectonophysics, 627, 98–107, doi:10.1016/j.tecto.2013.11.010.
  19. Yang, Y., M. H. Ritzwoller, Y. Zheng, W. Shen, A. L. Levshin, and Z. Xie (2012), A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibe, Journal of Geophysical Research: Solid Earth, 117(B4), n/a-n/a, doi:10.1029/2011JB008810.
  20. Zhang, Z., and S. Klemperer (2010), Crustal structure of the Tethyan Himalaya, southern Tibet: new constraints from old wide-angle seismic data, Geophysical Journal International, doi:10.1111/j.1365-246X.2010.04578.x.
  21. Zhang, Z., S. Klemperer, Z. Bai, Y. Chen, and J. Teng (2011), Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China, Gondwana Research, 19(4), 994–1007, doi:10.1016/j.gr.2010.09.008.
  22. Zhang, Z., Z. Bai, S. L. Klemperer, X. Tian, T. Xu, Y. Chen, and J. Teng (2013), Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation, Tectonophysics, 606, 140–159, doi:10.1016/j.tecto.2013.02.040.
  23. Zhao, J., W. D. Mooney, X. Zhang, Z. Li, Z. Jin, and N. Okaya (2006), Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications, Earth and Planetary Science Letters, 241(3–4), 804–814, doi:10.1016/j.epsl.2005.11.003.
  24. Zheng, Y., W. Shen, L. Zhou, Y. Yang, Z. Xie, and M. H. Ritzwoller (2011), Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography, Journal of Geophysical Research, 116(B12), doi:10.1029/2011JB008637.
  25. Gao, R., Lu, Z., Klemperer, S. L., Wang, H., Dong, S., Li, W., & Li, H. (2016). Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7), 555-560, doi:10.1038/ngeo2730
  26. Zhang, X., Teng, J., Sun, R., Romanelli, F., Zhang, Z., and Panza, G. F. (2014). Structural model of the lithosphere–asthenosphere system beneath the Qinghai–Tibet Plateau and its adjacent areas. Tectonophysics, 634, 208-226, doi:10.1016/j.tecto.2014.08.017.

References for crustal anisotropy models:

  1. Huang, H., H. Yao, and R. D. van der Hilst (2010), Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry, Geophysical Research Letters, 37(21), n/a-n/a, doi:10.1029/2010GL044981.
  2. Kong, F., J. Wu, K. H. Liu, and S. S. Gao (2016), Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas, Earth and Planetary Science Letters, 442, 72–79, doi:10.1016/j.epsl.2016.03.003.
  3. Shapiro, N. M. (2004), Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy, Science, 305(5681), 233–236, doi:10.1126/science.1098276.
  4. Sun, Y., F. Niu, H. Liu, Y. Chen, and J. Liu (2012), Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data, Earth and Planetary Science Letters, 349350, 186–197, doi:10.1016/j.epsl.2012.07.007.
  5. Xie, J., M. H. Ritzwoller, W. Shen, Y. Yang, Y. Zheng, and L. Zhou (2013), Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton, Journal of Geophysical Research: Solid Earth, 118(8), 4226–4252, doi:10.1002/jgrb.50296.
  6. Yao, H., R. D. van der Hilst, and J.-P. Montagner (2010), Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography, Journal of Geophysical Research, 115(B12), doi:10.1029/2009JB007142.

References for crustal attenuation models:

  1. Bao, X., E. Sandvol, J. Ni, T. Hearn, Y. J. Chen, and Y. Shen (2011), High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions, Geophysical Research Letters, 38(16), n/a-n/a, doi:10.1029/2011GL048012.
  2. Bao, X., E. Sandvol, Y. J. Chen, J. Ni, T. Hearn, and Y. Shen (2012), Azimuthal anisotropy of Lg attenuation in eastern Tibetan Plateau, Journal of Geophysical Research: Solid Earth, 117(B10), n/a-n/a, doi:10.1029/2012JB009255.
  3. Zhao, L.-F., X.-B. Xie, W.-M. Wang, J.-H. Zhang, and Z.-X. Yao (2010), Seismic Lg-wave Q tomography in and around Northeast China, Journal of Geophysical Research, 115(B8), doi:10.1029/2009JB007157.
  4. Zhao, L.-F., X.-B. Xie, J.-K. He, X. Tian, and Z.-X. Yao (2013a), Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography, Earth and Planetary Science Letters, 383, 113–122, doi:10.1016/j.epsl.2013.09.038.
  5. Zhao, L.-F., X.-B. Xie, W.-M. Wang, J.-H. Zhang, and Z.-X. Yao (2013b), Crustal Lg attenuation within the North China Craton and its surrounding regions, Geophysical Journal International, 195(1), 513–531, doi:10.1093/gji/ggt235.

References for mantle models: 

  1. Ceylan, S., J. Ni, J. Y. Chen, Q. Zhang, F. Tilmann, and E. Sandvol (2012), Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet, Journal of Geophysical Research: Solid Earth, 117(B11), n/a-n/a, doi:10.1029/2012JB009210.
  2. Chen, M., F. Niu, Q. Liu, J. Tromp, and X. Zheng (2015), Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons, Journal of Geophysical Research: Solid Earth, 120(3), 1762–1786, doi:10.1002/2014JB011638.
  3. Chen, Y., J. Badal, and J. Hu (2010), Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas, Pure and Applied Geophysics, 167(10), 1171–1203, doi:10.1007/s00024-009-0040-1.
  4. Guo, Z., Y. J. Chen, J. Ning, Y. Yang, J. C. Afonso, and Y. Tang (2016), Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China, Earth and Planetary Science Letters, 433, 31–43, doi:10.1016/j.epsl.2015.09.035.
  5. Huang, J., D. Zhao, and S. Zheng (2002), Lithospheric structure and its relationship to seismic and volcanic activity in southwest China, Journal of Geophysical Research: Solid Earth, 107(B10), ESE 13-1-ESE 13-14, doi:10.1029/2000JB000137.
  6. Lei, J. (2011), Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic belt, Journal of Geophysical Research, 116(B9), doi:10.1029/2010JB008000.
  7. Lei, J. (2012), Upper-mantle tomography and dynamics beneath the North China Craton, Journal of Geophysical Research: Solid Earth, 117(B6), n/a-n/a, doi:10.1029/2012JB009212.
  8. Lei, J., and D. Zhao (2005), P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia, Tectonophysics, 397(3–4), 281–295, doi:10.1016/j.tecto.2004.12.009.
  9. Lei, J., and D. Zhao (2007), Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt, Physics of the Earth and Planetary Interiors, 162(3–4), 165–185, doi:10.1016/j.pepi.2007.04.010.
  10. Lei, J., and D. Zhao (2016), Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet, Geochemistry, Geophysics, Geosystems, 17(5), 1861–1884, doi:10.1002/2016GC006262.
  11. Lei, J., D. Zhao, and Y. Su (2009a), Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data, Journal of Geophysical Research, 114(B5), doi:10.1029/2008JB005881.
  12. Lei, J., D. Zhao, B. Steinberger, B. Wu, F. Shen, and Z. Li (2009b), New seismic constraints on the upper mantle structure of the Hainan plume, Physics of the Earth and Planetary Interiors, 173(1–2), 33–50, doi:10.1016/j.pepi.2008.10.013.
  13. Lei, J., F. Xie, Q. Fan, and M. Santosh (2013), Seismic imaging of the deep structure under the Chinese volcanoes: An overview, Physics of the Earth and Planetary Interiors, 224, 104–123, doi:10.1016/j.pepi.2013.08.008.
  14. Li, C., and R. D. van der Hilst (2010), Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography, Journal of Geophysical Research, 115(B7), doi:10.1029/2009JB006882.
  15. Li, C., R. D. van der Hilst, and M. N. Toksöz (2006), Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia, Physics of the Earth and Planetary Interiors, 154(2), 180–195.
  16. Li, C., R. D. van der Hilst, A. S. Meltzer, and E. R. Engdahl (2008), Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma, Earth and Planetary Science Letters, 274(1–2), 157–168, doi:10.1016/j.epsl.2008.07.016.
  17. Li, Y., Q. Wu, J. Pan, F. Zhang, and D. Yu (2013), An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography, Earth and Planetary Science Letters, 377378, 367–377, doi:10.1016/j.epsl.2013.06.033.
  18. Liang, X., E. Sandvol, Y. J. Chen, T. Hearn, J. Ni, S. Klemperer, Y. Shen, and F. Tilmann (2012), A complex Tibetan upper mantle: A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere, Earth and Planetary Science Letters, 333334, 101–111, doi:10.1016/j.epsl.2012.03.036.
  19. Liang, X. et al. (2016), 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography, Earth and Planetary Science Letters, 443, 162–175, doi:10.1016/j.epsl.2016.03.029.
  20. Nunn, C., S. W. Roecker, F. J. Tilmann, K. F. Priestley, R. Heyburn, E. A. Sandvol, J. F. Ni, Y. J. Chen, W. Zhao, and t. I. Team (2014), Imaging the lithosphere beneath NE Tibet: teleseismic P and S body wave tomography incorporating surface wave starting models, Geophysical Journal International, 196(3), 1724–1741, doi:10.1093/gji/ggt476.
  21. Razi, A. S., S. W. Roecker, and V. Levin (2016), The fate of the Indian lithosphere beneath western Tibet: Upper mantle elastic wave speed structure from a joint teleseismic and regional body wave tomographic study, Physics of the Earth and Planetary Interiors, 251, 11–23, doi:10.1016/j.pepi.2015.12.001.
  22. Shen, W., M. H. Ritzwoller, D. Kang, Y. Kim, F.-C. Lin, J. Ning, W. Wang, Y. Zheng, and L. Zhou (2016), A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophysical Journal International, 206(2), 954–979, doi:10.1093/gji/ggw175.
  23. Tilmann, F. (2003), Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet, Science, 300(5624), 1424–1427, doi:10.1126/science.1082777.
  24. Wittlinger, G. et al. (1996), Seismic tomography of northern Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts, Earth and Planetary Science Letters, 139(1), 263–279.
  25. Zhang, Q., E. Sandvol, J. Ni, Y. Yang, and Y. J. Chen (2011), Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau, Earth and Planetary Science Letters, 304(1–2), 103–112, doi:10.1016/j.epsl.2011.01.021.
  26. Zhao, L., R. M. Allen, T. Zheng, and S.-H. Hung (2009), Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China, Geophysical Research Letters, 36(17), doi:10.1029/2009GL039781.
  27. Zhao, L., R. M. Allen, T. Zheng, and R. Zhu (2012), High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas, Geochemistry, Geophysics, Geosystems, 13(6), n/a-n/a, doi:10.1029/2012GC004119.
  28. Zheng, D., H. Li, Y. Shen, J. Tan, L. Ouyang, and X. Li (2016), Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions, Geophysical Journal International, 204(1), 583–590, doi:10.1093/gji/ggv469.
  29. Zheng, Y., W. Shen, L. Zhou, Y. Yang, Z. Xie, and M. H. Ritzwoller (2011), Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography, Journal of Geophysical Research, 116(B12), doi:10.1029/2011JB008637.
  30. Zhou, L., J. Xie, W. Shen, Y. Zheng, Y. Yang, H. Shi, and M. H. Ritzwoller (2012), The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography: Crust and uppermost mantle beneath S China, Geophysical Journal International, 189(3), 1565–1583, doi:10.1111/j.1365-246X.2012.05423.x.
  31. Zhang, X., Teng, J., Sun, R., Romanelli, F., Zhang, Z., and Panza, G. F. (2014). Structural model of the lithosphere–asthenosphere system beneath the Qinghai–Tibet Plateau and its adjacent areas. Tectonophysics, 634, 208-226, doi:10.1016/j.tecto.2014.08.017.

References for mantle anisotropy models:

  1. Lei, J., Y. Li, F. Xie, J. Teng, G. Zhang, C. Sun, and X. Zha (2014), Pn anisotropic tomography and dynamics under eastern Tibetan plateau, Journal of Geophysical Research: Solid Earth, 119(3), 2174–2198, doi:10.1002/2013JB010847.
  2. Singh, A., T. Eken, D. D. Mohanty, D. Saikia, C. Singh, and M. Ravi Kumar (2016), Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves, Physics of the Earth and Planetary Interiors, 250, 1–11, doi:10.1016/j.pepi.2015.11.001.
  3. Wei, W., D. Zhao, and J. Xu (2013), P-wave anisotropic tomography in Southeast Tibet: New insight into the lower crustal flow and seismotectonics, Physics of the Earth and Planetary Interiors, 222, 47–57, doi:10.1016/j.pepi.2013.07.002.
  4. Zhao, L., and M. Xue (2010), Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy, Geochemistry, Geophysics, Geosystems, 11(7), n/a-n/a, doi:10.1029/2010GC003068.
  5. Zhao, L., T. Zheng, G. Lu, and Y. Ai (2011), No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: constraints from new SKS wave splitting measurements, Geophysical Journal International, 187(2), 1027–1037, doi:10.1111/j.1365-246X.2011.05201.x.
  6. Zhao, L., T. Zheng, and G. Lu (2013), Distinct upper mantle deformation of cratons in response to subduction: Constraints from SKS wave splitting measurements in eastern China, Gondwana Research, 23(1), 39–53, doi:10.1016/j.gr.2012.04.007.
  7. Zhou, Z., and J. Lei (2016), Pn anisotropic tomography and mantle dynamics beneath China, Physics of the Earth and Planetary Interiors, 257, 193–204, doi:10.1016/j.pepi.2016.06.005.

References for mantle attenuation models:

  1. Zhao, L.-F., X.-B. Xie, B.-F. Tian, Q.-F. Chen, T.-Y. Hao, and Z.-X. Yao (2015), Pn wave geometrical spreading and attenuation in Northeast China and the Korean Peninsula constrained by observations from North Korean nuclear explosions, Journal of Geophysical Research: Solid Earth, 120(11), 7558–7571, doi:10.1002/2015JB012205.

References for lithosphere and upper mantle discontinuities models:

  1. Ai, Y., T. Zheng, W. Xu, Y. He, and D. Dong (2003), A complex 660 km discontinuity beneath northeast China, Earth and Planetary Science Letters, 212(1–2), 63–71, doi:10.1016/S0012-821X(03)00266-8.
  2. Bagley, B., A. M. Courtier, and J. Revenaugh (2013), Seismic shear wave reflectivity structure of the mantle beneath northeast China and the northwest Pacific, Journal of Geophysical Research: Solid Earth, 118(10), 5417–5427, doi:10.1002/jgrb.50385.
  3. Chen, L. (2009), Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration, Physics of the Earth and Planetary Interiors, 173(3–4), 216–227, doi:10.1016/j.pepi.2008.11.011.
  4. Chen, L. (2010), Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications, Lithos, 120(1–2), 96–115, doi:10.1016/j.lithos.2009.12.007.
  5. Chen, L., and Y. Ai (2009), Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration, Journal of Geophysical Research, 114(B6), doi:10.1029/2008JB006221.
  6. Chen, L., T. Zheng, and W. Xu (2006a), A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration, Journal of Geophysical Research, 111(B9), doi:10.1029/2005JB003974.
  7. Chen, L., T. Zheng, and W. Xu (2006b), Receiver function migration image of the deep structure in the Bohai Bay Basin, eastern China, Geophysical Research Letters, 33(20), doi:10.1029/2006GL027593.
  8. Chen, L., W. Tao, L. Zhao, and T. Zheng (2008), Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton, Earth and Planetary Science Letters, 267(1–2), 56–68, doi:10.1016/j.epsl.2007.11.024.
  9. Chen, L., C. Cheng, and Z. Wei (2009), Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton, Earth and Planetary Science Letters, 286(1–2), 171–183, doi:10.1016/j.epsl.2009.06.022.
  10. Chen, L., M. Jiang, J. Yang, Z. Wei, C. Liu, and Y. Ling (2014), Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton, Geology, 42(3), 223–226.
  11. Chuansong, H., Z. Lupei, and W. Qingcai (2009), The significance of crust structure and continental dynamics inferred from receiver functions in West Yunnan, Acta Geologica Sinica (English edition), 83(6), 1163–1172.
  12. Heit, B., X. Yuan, M. Bianchi, R. Kind, and J. Gossler (2010), Study of the lithospheric and upper-mantle discontinuities beneath eastern Asia by SS precursors: Study of discontinuities beneath eastern Asia, Geophysical Journal International, 183(1), 252–266, doi:10.1111/j.1365-246X.2010.04714.x.
  13. Huang, R., L. Zhu, and Y. Xu (2014a), Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination, Tectonophysics, 636, 286–292, doi:10.1016/j.tecto.2014.09.001.
  14. Huang, R., Y. Xu, Y. Luo, and X. Jiang (2014b), Mantle Transition Zone Structure Beneath Southeastern China and its Implications for Stagnant Slab and Water Transportation in the Mantle, Pure and Applied Geophysics, 171(9), 2129–2136, doi:10.1007/s00024-014-0837-4.
  15. Huang, R., Y. Xu, L. Zhu, and K. He (2015), Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust, Journal of Asian Earth Sciences, 112, 42–48, doi:10.1016/j.jseaes.2015.09.002.
  16. Kind, R. et al. (2002), Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction, Science, 298(5596), 1219–1221.
  17. Kumar, P., X. Yuan, R. Kind, and J. Ni (2006), Imaging the colliding Indian and Asian lithospheric plates beneath Tibet, Journal of Geophysical Research: Solid Earth, 111(B6), n/a-n/a, doi:10.1029/2005JB003930.
  18. Lee, S.-H., J. Rhie, Y. Park, and K.-H. Kim (2014), Topography of the 410 and 660 km discontinuities beneath the Korean Peninsula and southwestern Japan using teleseismic receiver functions: Topo. of the UMD around Korea, Journal of Geophysical Research: Solid Earth, 119(9), 7245–7257, doi:10.1002/2014JB011149.
  19. Li, X., and X. Yuan (2003), Receiver functions in northeast China – implications for slab penetration into the lower mantle in northwest Pacific subduction zone, Earth and Planetary Science Letters, 216(4), 679–691, doi:10.1016/S0012-821X(03)00555-7.
  20. Li, X., M. Santosh, S. Cheng, X. Xu, and W. Zhong (2015), Crustal structure and composition beneath the northeastern Tibetan plateau from receiver function analysis, Physics of the Earth and Planetary Interiors, 249, 51–58, doi:10.1016/j.pepi.2015.10.001.
  21. Li, Y., M. Gao, and Q. Wu (2014), Crustal thickness map of the Chinese mainland from teleseismic receiver functions, Tectonophysics, 611, 51–60, doi:10.1016/j.tecto.2013.11.019.
  22. Liu, Z., F. Niu, Y. J. Chen, S. Grand, H. Kawakatsu, J. Ning, S. Tanaka, M. Obayashi, and J. Ni (2015), Receiver function images of the mantle transition zone beneath NE China: New constraints on intraplate volcanism, deep subduction and their potential link, Earth and Planetary Science Letters, 412, 101–111, doi:10.1016/j.epsl.2014.12.019.
  23. Shen, X., X. Mei, and Y. Zhang (2011), The Crustal and Upper-Mantle Structures beneath the Northeastern Margin of Tibet, Bulletin of the Seismological Society of America, 101(6), 2782–2795, doi:10.1785/0120100112.
  24. Shen, X., X. Yuan, and M. Liu (2015), Is the Asian lithosphere underthrusting beneath northeastern Tibetan Plateau? Insights from seismic receiver functions, Earth and Planetary Science Letters, 428, 172–180, doi:10.1016/j.epsl.2015.07.041.
  25. Shi, D., Y. Shen, W. Zhao, and A. Li (2009), Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam–Kunlun boundary in the Northeast Tibetan plateau, Earth and Planetary Science Letters, 288(1–2), 329–334, doi:10.1016/j.epsl.2009.09.036.
  26. Sun, X., X. Bao, M. Xu, D. W. Eaton, X. Song, L. Wang, Z. Ding, N. Mi, D. Yu, and H. Li (2014), Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion, Geophysical Research Letters, 41(5), 1479–1484, doi:10.1002/2014GL059269.
  27. Tian, X., and Z. Zhang (2013), Bulk crustal properties in NE Tibet and their implications for deformation model, Gondwana Research, 24(2), 548–559, doi:10.1016/j.gr.2012.12.024.
  28. Tian, X., Z. Liu, S. Si, and Z. Zhang (2014), The crustal thickness of NE Tibet and its implication for crustal shortening, Tectonophysics, 634, 198–207, doi:10.1016/j.tecto.2014.07.001.
  29. Vergne, J., G. Wittlinger, Q. Hui, P. Tapponnier, G. Poupinet, J. Mei, G. Herquel, and A. Paul (2002), Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau, Earth and Planetary Science Letters, 203(1), 25–33.
  30. Wang, C.-Y., L. Zhu, H. Lou, B.-S. Huang, Z. Yao, and X. Luo (2010a), Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications, Journal of Geophysical Research, 115(B11), doi:10.1029/2010JB007527.
  31. Wang, C.-Y., E. Sandvol, L. Zhu, H. Lou, Z. Yao, and X. Luo (2014), Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications, Earth and Planetary Science Letters, 387, 198–211, doi:10.1016/j.epsl.2013.11.033.
  32. Wang, H.-L., H.-W. Chen, and L. Zhu (2010b), Constraints on average Taiwan Reference Moho Discontinuity Model-receiver function analysis using BATS data: Taiwan reference Moho discontinuity model, Geophysical Journal International, 183(1), 1–19, doi:10.1111/j.1365-246X.2010.04692.x.
  33. Wang, H.-L., L. Zhu, and H.-W. Chen (2010c), Moho depth variation in Taiwan from teleseismic receiver functions, Journal of Asian Earth Sciences, 37(3), 286–291, doi:10.1016/j.jseaes.2009.08.015.
  34. Wittlinger, G. (2004), Lithospheric and upper mantle stratifications beneath Tibet: New insights from Sp conversions, Geophysical Research Letters, 31(19), doi:10.1029/2004GL020955.
  35. Wittlinger, G., J. Vergne, P. Tapponnier, V. Farra, G. Poupinet, M. Jiang, H. Su, G. Herquel, and A. Paul (2004), Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet, Earth and Planetary Science Letters, 221(1–4), 117–130, doi:10.1016/S0012-821X(03)00723-4.
  36. Xu, L., S. Rondenay, and R. D. van der Hilst (2007), Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions, Physics of the Earth and Planetary Interiors, 165(3–4), 176–193, doi:10.1016/j.pepi.2007.09.002.
  37. Ye, Z., R. Gao, Q. Li, H. Zhang, X. Shen, X. Liu, and C. Gong (2015), Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth, Earth and Planetary Science Letters, 426, 109–117, doi:10.1016/j.epsl.2015.06.024.
  38. Yue, H. et al. (2012), Lithospheric and upper mantle structure of the northeastern Tibetan Plateau, Journal of Geophysical Research: Solid Earth, 117(B5), n/a-n/a, doi:10.1029/2011JB008545.
  39. Zhang, R., Q. Wu, L. Sun, J. He, and Z. Gao (2014), Crustal and lithospheric structure of Northeast China from S-wave receiver functions, Earth and Planetary Science Letters, 401, 196–205, doi:10.1016/j.epsl.2014.06.017.
  40. Zhang, R., Z. Gao, Q. Wu, Z. Xie, and G. Zhang (2016), Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean craton from P-wave receiver functions, Tectonophysics, 675, 159–167, doi:10.1016/j.tecto.2016.03.002.
  41. Zhang, Z., X. Yuan, Y. Chen, X. Tian, R. Kind, X. Li, and J. Teng (2010), Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin, Earth and Planetary Science Letters, 292(3–4), 254–264, doi:10.1016/j.epsl.2010.01.046.
  42. Zhao, J. et al. (2010), The boundary between the Indian and Asian tectonic plates below Tibet, Proceedings of the National Academy of Sciences, 107(25), 11229–11233.
  43. Zhao, W. et al. (2011), Tibetan plate overriding the Asian plate in central and northern Tibet, Nature Geoscience, 4(12), 870–873, doi:10.1038/ngeo1309.
  44. Zhu, L. (2004), Lateral variation of the Tibetan lithospheric structure inferred from teleseismic waveforms, Advancements in Seismology and Physics of the Earth Interior in China. Seismological Press, Beijing, 295–310.
  45. Zhu, L., T. J. Owens, and G. E. Randall (1995), Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions, Bulletin of the Seismological Society of America, 85(6), 1531–1540.
  46. Zhu, L.-P., R.-S. Zeng, F. T. Wu, T. J. Owens, and G. E. Randall (1993), Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms, Acta Seismologica Sinica, 6(2), 305–316.
  47. 武岩, 丁志峰, and 朱露培 (2011), 利用共转换点叠加方法研究华北地区地壳结构, 地球物理学报, 54(10), 2528–2537.
  48. 王兴臣, 丁志峰, and 朱露培 (2013), 唐海—商都地震台阵剖面下方岩石圈结构, 地球物理学报, 56(11), 228–236.

General References:

  1. Afanasiev, M., D. Peter, K. Sager, S. Simut, L. Ermert, L. Krischer, and A. Fichtner (2015), Foundations for a multiscale collaborative Earth model, Geophysical Journal International, 204(1), 39–58, doi:10.1093/gji/ggv439.
  2. Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, Journal of Geophysical Research: Solid Earth, 118(11), 5920–5938, doi:10.1002/2013JB010466.
  3. Klemperer, S. L. (2006), Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow, Geological Society, London, Special Publications, 268(1), 39–70.
  4. Liu, K., and Y. Zhou (2016), Global Rayleigh wave phase-velocity maps from finite-frequency tomography, Geophysical Journal International, 205(1), 51–66, doi:10.1093/gji/ggv555.
  5. Ma, Z., G. Masters, G. Laske, and M. Pasyanos (2014), A comprehensive dispersion model of surface wave phase and group velocity for the globe, Geophysical Journal International, 199(1), 113–135, doi:10.1093/gji/ggu246.
  6. Ritsema, J., A. Deuss, H. J. van Heijst, and J. H. Woodhouse (2011), S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements: S40RTS, Geophysical Journal International, 184(3), 1223–1236, doi:10.1111/j.1365-246X.2010.04884.x.
  7. Schaeffer, A. J., and S. Lebedev (2013), Global shear speed structure of the upper mantle and transition zone, Geophysical Journal International, 194(1), 417–449, doi:10.1093/gji/ggt095.
  8. Shaw, J. H. et al. (2015), Unified Structural Representation of the southern California crust and upper mantle, Earth and Planetary Science Letters, 415, 1–15, doi:10.1016/j.epsl.2015.01.016.
  9. Tape, C., Q. Liu, A. Maggi, and J. Tromp (2009), Adjoint tomography of the southern California crust, Science, 325(5943), 988–992.
  10. Zhou, Y., G. Nolet, F. A. Dahlen, and G. Laske (2006), Global upper-mantle structure from finite-frequency surface-wave tomography, Journal of Geophysical Research, 111(B4), doi:10.1029/2005JB003677.
  11. Zhu, H., E. Bozdağ, D. Peter, and J. Tromp (2012), Structure of the European upper mantle revealed by adjoint tomography, Nature Geoscience, 5(7), 493–498, doi:10.1038/ngeo1501.